

Histogram

- Summarizes a large amount of data collected over a period of time and graphically represents frequency distribution in a bar graph format
- Data should be variable and measured on a continuous scale (i.e. time, weight, distance, speed, etc)
- When gathering data at least 50 data points should be used

Histogram

- **Prepare a checksheet from the data collected; this checksheet represents how many minutes late each trailer was released while waiting for a KLS**
- **Count the number of data points collected (50)**

Trailers Released Past Tact Time				
# of Minutes February 12 to 26				
1	5	7	8	23
10	5	21	9	5
3	2	6	12	7
7	11	23	14	8
4	12	2	4	12
11	19	13	12	15
10	18	12	11	16
17	18	19	16	18
2	18	5	11	24
22	13	3	17	7

Histogram

- Determine the data's range (r): Largest value in the data subtract the smallest value in the data (24-1=23= Range)
- Determine the number of data intervals needed (k): the square root of the total # of data points ($\sqrt{50} = 7.07$ rounded off=7)

Trailers Released Past Tact Time				
# of Minutes February 12 to 26				
1	5	7	8	23
10	5	21	9	5
3	2	6	12	7
7	11	23	14	8
4	12	2	4	12
11	19	13	12	15
10	18	12	11	16
17	18	19	16	18
2	18	5	11	24
22	13	3	17	7

Histogram

- Determine the width of the data interval:

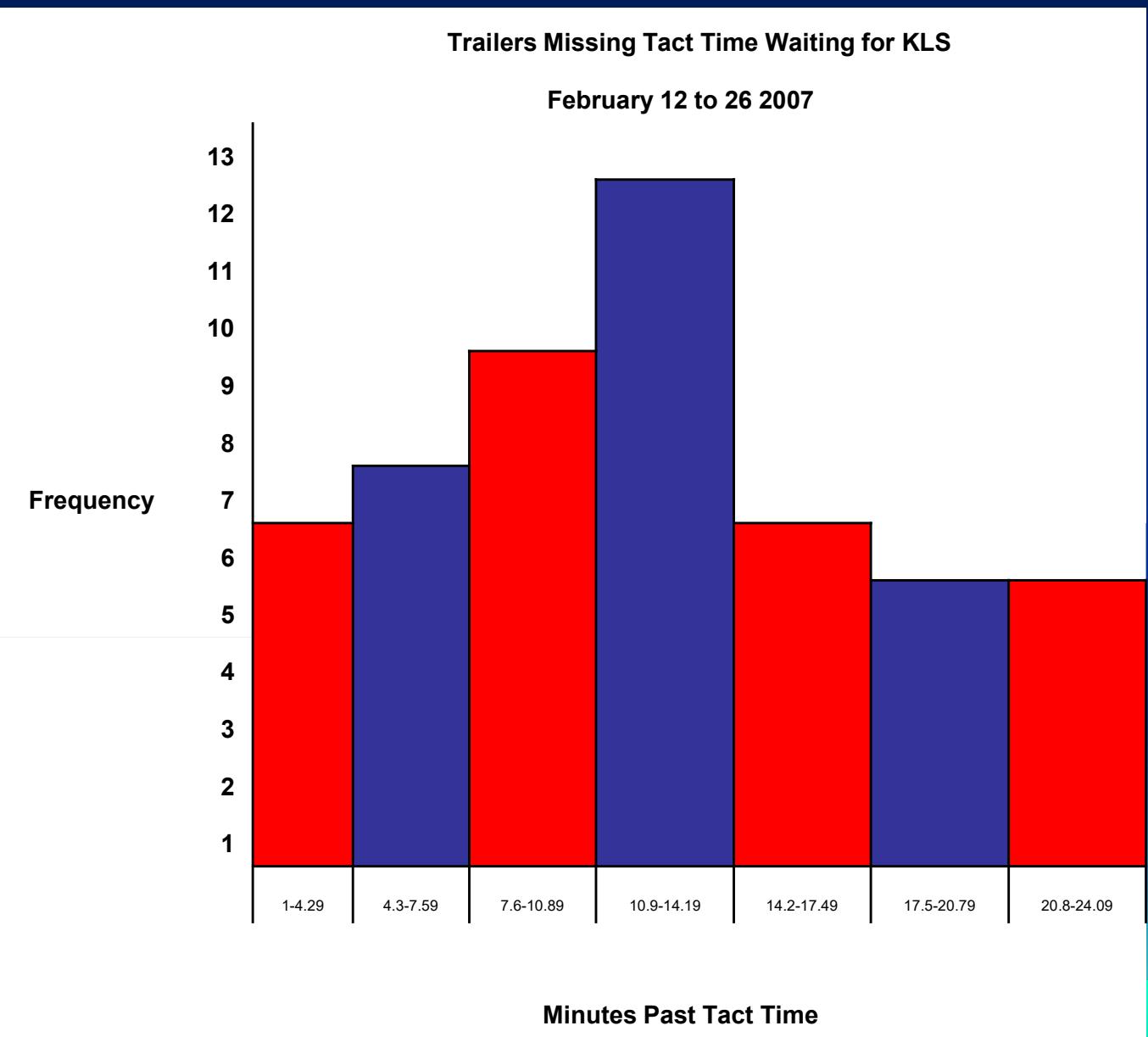
$$W = r/k = 23/7 = 3.3$$

and apply the width to the number of data intervals

7 Data Intervals @ 3.3 units wide

1-4.29	4.3-7.59	7.6-10.89	10.9-14.19	14.2-17.49	17.5-20.79	20.8-24.09
--------	----------	-----------	------------	------------	------------	------------

Histogram


- Construct a frequency table from the data on the checksheets

Data Interval	Frequency	Total
1- 4.29		6
4.3- 7.59		7
7.6- 10.89		9
10.9- 14.19		12
14.2- 17.49		6
17.5- 20.79		5
20.8- 24.09		5

Histogram

- **Draw the histogram**

Histogram

- Interpret the data:
 - Centering: where is the distribution centered?
 - Variation (spread): is the spread of the data too variable?
 - Shape: is the histogram bell shaped or skewed to one side or have multiple peaks?
 - Process Capability: is the histogram within the specified limits?

